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The relationships which are satisfied by various gas- and electrohydrodynamic 
characteristics on both sides of a discontinuiry are presented in the monograph 

[l]. The system of relationships at a discontinuity in electrohydrodynamics is 

considered here for the case in which the dielectric constant and the permeabi- 
lity are equal to unity. It is shown that the specification of all parameters ahead 

of a dls~ontin~~ is not sufficient for determining the parameters behind the 

shock wave front, since the intensity of the surface charge CT accumulated at 

the discontinuity and the related normal component of the electric field &Z 

behind the disContinuity front remain undetermined. 
The relationships needed for closing the system of equations at the shock wave 

front are derived by analyzing the wave structure. The form of these formulas 

and consequently, also, o (orE,?jdepend on the shock wave intensity and on the 

sign and magnitude of the component of the elctric field intensity ahead of the 

wave and normal to the discontinuity. It is shown that the formation of a surface 
charge at the shock wave front is related to the accumulation of a bulk charge 
in the front neighborhood. The density of the latter in the case considered here 

may exceed that of the charge ahead of the wave by several orders of magnitudes 
A numerical solution of the problem of shock wave structure presented for the 

case of a small interaction parameter. 

The evolution of electrohydrodynamic shock waves is examined, The analy- 

sis shows that the normal velocity component of gas ahead of the shock wave 

front must be higher and behind it lower than the speed of sound, 

The shock adiabate equation is analyzed in the case in which the electric 
field behind the wave can be neglected. 

1, Derivation of mlationrhlpr at 8 dfrmntlnuity. The general form of the system of 
relationships at a discontinuity, which takes into account electromagnetic phenomena, 

is given in the monograph [I]. The system of equations of electrohydrodynamics appl- 
icable at a dls~ontinui~ can be derived from these relationships as a particular case by 
using relevant estimates B’J. The relationships at a dis~ontinui~ in elec~ohydrodyna- 
mics can, also, be obtained in the usual manner from equations of elec~ohydrodynam- 
its, The system of the latter is of the form 

n?/ni _- div :ru = +I. dqfdt -j- div j = 0, p = :,!<T (1.1) 

a,CJ/lfJli; -L ri ‘J.t’,, ($‘/!~UJ + JXSi,/ L ;Zij) = qEi (1.2) 

$-p (ciT + &u?J+ tiiv[pu[c,T ++u?)-+ q+-u*z] = jE (1.3) 

I-01 E = 0, div E = ‘Inq, 11 = - gr;jd cp (I.51 
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j=qu$-qhE (1.3) 

rot. H = 1 aE 
$-j-f-,,, divH = 0 (1.6) 

Here P is the medium density; Q is the bulk charge density; u is the velocity; j is the 
current density; ,u is the pressure; .nij are components of viscous stresses; E and H are 
the intensities of the electric and magnetic fields, respectively; CF is the electric pate- 

ntial; T is the temperature; q is the heat flux density vector; et, and C, are the specif- 

ic heats at constant pressure and volume, respectively; c is the speed of sound; b is the 
mobility, and H is the gas constant. We assume that the relationship between the ten- 

sors of ViSCOUS stress and rate of strain and also that between the vector of the heat flux 

'Q and the temperature gradient are the same as in gasdynamics. The last two Eqs. 
(1.6) are used for determining H from calculated j and E and are separate from Eqs. 

(1.1) - (1.5). 
It is assumed throughout the following that only one kind of particles with charge 

density q > 0 is present. 

Using a system of coordinates attached to the discontinuity surface, applying to Eqs. 

(l.l)- (1.6) the procedure proposed in [l] for the derivation of relationships at a strong 
discontinuity, and neglecting viscosity and thermal conductivity, we obtain 

@&J = 0, {i*1 = (4 (%% L- bE,)} L= - div i - dsjr3t 

{jTf = {qui) + bET ((11 (l.ij 

!%I @h> + m - -& (E,,“) = 0, pi,, {UT} - & El (EIL} = 0 (1.8, 

~zL,, (c,Z + 1/211,2 + 1/l~~.,‘2j = Et. i (1.i)) 

(E,) = 4.x, (E,) = 0 (i.i\i) 

{FL} = &(iXtl), {H,,) = 0 (i. i 1) 

where, as usual, {a} = as - a, with the subscripts 1 and 2 denoting the state ahead 

and behind the discontinuity front, respectively; JI is a unit vector normal to the front 
and directed from the state ahead of the discontinuity to that behind it. Parameters 

o and i are, respectively, the surface charge and the surface current, and div i is 

the surface divergence. 
It was assumed in the derivation of these relationships that there was no mass, mom- 

entum, energy and charge generated at the discontinuity. Equations (1.8) are those of 
conservation of momentum components normal and tangential to the discontinuity. The 

second of Eqs. (1.10) implies the continuity of the elctric field tangential component. 
The continuity of mass flow arti of the electric field tangential component together with 
the first of relationships (1.11) were used in the formulation of Eqs. (1.7) - (1.9). The 
case of a stationary motion with a plane discontinuity, in which the terms au/tit and 
CTiv i appearing in the second of Eqs. (1.7) vanish, is considered in the following. 

2. ChaiihUonof d ww Let us first consider the case in which the tang- 

ential component of the electric field ahead of the discontinuity is E&r = 0. 

We denote PU,, = U, / v = m,where v is the specific volume. At the discontinui- 

ty the system or relationships (1.7)-(1.10) can be written as 
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m = const, 1” Iu,J + {PI - &{En2) = 0, tn{u,) = 0 (2.1) 

“1 {+J- pu + 1/*u,2 + ‘j21Qj = 0 

{E,)=4m, {a ($, + WJ) = 0, {jr1 = kw> 

(2.2) 
(2.3~ 

Tangential discontinuities. Lets = Oandj, # (i.This implies that U,,l= 

= U,? = 0. The jump of v is arbitrary. From the third of relationships (2.1) follows 

that a jump tangential to the discontinuity of the velocity component is arbitrary. The 
second of Eqs. (2.1) and (2.3) can be written as 

(1’1 - & {Elt2} = 0, C&J = 0 (2.4) 

The first formula of (2.4) makes it possible to determine the jump of E,for a given 

pressure jump at the discontinuity or vice versa. It is obvious that in the first case 

E:,,? > 0 is to be chosen out of its two possible values (with E,,, >O),since otherwise 

the second of Eqs. (2.4) will not be satisfied foF q > 0. The pressure jump behind the 

discontinuity cannot be selected arbitrarily because of the necessity to satisfy the relat- 

ionship 

PZ>PI - & LG,} 

For p2 --+ A - E,,? / enwe have Eriz -+ 0 and q2 + oo .The jumps of j, and &are 
related to each other by the third formula of (2.3) and the surface charge u is found 

from the first of formulas (2.3). 
The case in which j, = 0 for no = 0 reduces to conventional gasdynamics. 

Contact-shock discontinuities. L&m +Oand j,= 0 iq # O).It follows 

from the third of Ee(2.1) that {u,} = 0 and it is always possible to select a system of 

coordinates in which u- = 0 and consequently also js = 0 (the last of formulas (2.3)). 

From the second of Eqs. (2.3) follows that 

U ill = AtbE,,, lLn2 = -bE,, 

We note that for u,~ > 0 we have E,, < 0 and E,, < 0. Expression for the surface 
charge cr given by the first of formulas (2.3) can now be written in the form 

(2.5) 

The jump of Q at such discontinuity is finite and arbitrary, hence with respect to ions 
this is in a sense a contact discontinuity. The relation between pressure and specific 
volume can be derived by formulas 

m2 iv> + lP> -&(v2}=0, ++,v}+;m2{2+ 0 (2.6) 

The possible case in which m # 0, j,, = G and the charge density q = 0 on one side 
of the discontinuity is considered in detail below for ET1 # 0. 

Shock waves. Let m #o and j, # O.We can assume, as previously, that u, = 
= jz = 0. Relationships (2.1)- (2.3) now become 

m = cod, m iun) + h-4 - & {En21 = 0 
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It is readily seen that when the parameters ahead of the wave and the normal compon- 
ent of the electric field Ens (or crf behind it are specified,then, generally speaking, 
parameters behind the shock wave front can be determined from the relationships (2.7). 
It can be shown that the value of E,s behind the wave cannot be specified arbitrarily. 

For simplicity let us consider a flow with small interaction parameter, and the following 
parameters ahead of the wave: 

Ql > 0, %I 3 0, J&I < 0, inI = ql (u,, + MS,,) > 0 

Since for a small interaction paramerer the electric forces do not affect the motion 

B], the gasdynamic parameters ahead and behind the shock wave are related to each 
other by conventional relationships of gasdynamics and are independent of electric par- 

ameters. The fifth of relationships (2.7) impIies that ins = q2 (uRz f Hi',,) > 0. 
Since the investigated gas flow contains neutral and charged particles of the same sign, 

qs > 0, Consequently the condition of continuity of electric current imposes on the 

electric field behind the wave the following limitation: 

J%2 > --ttna/h 

It will be shown in the next Section that for zc,r > 0 and E,, > 0 the electric field at 
the discontinuity is continuous. 

Eiectrohydrodynamic relationships applicable to shock waves are given in [3], where 

the analysis of the behavior of parameters along the shock wave was made for specific 
numerical values of all parameters ahead of the shock wave front and a certain arbitr- 

ary surface charge intensity. Parameters behind the shock wave front were calcuiated. 

The results of the present analysis show that formulation of the problem to be incorrect. 

The arbitrary specification of the surface charge intensity (T along the front of an elec- 

trohydrodynamic shock wave is inadmissible. The surface charge intensity must be de- 

termined from the shock wave structure and the sign of the electric field normal comp- 

onent_ The parameters behind the shock wave front can then be determined by substi- 
tuting the derive expression for the surface charge into the relationships at the disconti- 

nuity. 
Let us consider the case of E,,+ 0 and i --- rl.The system of equations applicable at 

the discontinui~ is of the form 
! 

?)L = C!lllStJ. ,,! {,1,1} - {p\ -K (I<,,"} -2 1' 

{E,) = 4q (7 (‘l!, 6”,,)) = 0, {j,.) -= (it (u, .. 6X,)} (‘.li)) 

Tangential discontinuity. Let /n =U(~~i=tr,,~ ;=c)).The discontinui~ of LJ 

is arbitrary. The third of Eqs. (2.8) implies that (1:‘” 1 - 0 while from the second of 

these follows that {p} = O.Equation (2.9) is satisfied, since lra --O.Two further cases are 

possible. 
1) En1 L ii. It follows from the second and third of Eqs. (2.10) that in this case two 



Tangential shock discontinuities. Let@= 0, jn= O(q# O)Jy Ohm’s 
law (I, 5) ~:‘,,t :-. - llnl / Band I$,? - - unz : b. For unI > 0 we have A:.,, < 0 and 
Et:” < 0. The surface charge 6 is determined by formula (Z&5). 

-The jump of fu,] is defined by the third of Eqs, (2,S) and tb rfiird of Eqs. f%f#) 

relates the jumps of f.L] and f*lti to each other. me of t&se parameters cari be select- 
ed arbitrarily, The jumps of pressure and specific volume are found from the second 

of Eqs. (2.8) and Eq. (2.9). 
Let rli + 0. jn = Oand qizm 0 ahead of the discontinuityy, If behind the latter q?#o it 

follows from (irr:= ?t that En2 =- utSB / It: the surface charge is determined by the first 

of formtilas {!,I. I a), and the jumps of fu,) I 5 j-3 and PI fund as in rbe previous case. 
in example of the flow considered here is provided by & shock wave ahead of which 

there are no charges. whik behind it a current flows parallel to the shock wave front. 

The case in which ahead of the wave !I + il,while behind it y= 0, and the current 

flowing ahcad of the front is parallel to the latter, 
The possibility of existence of tangential and contact shock d~~&~ntjR~~~~~~ CXHZ be 

established by the analysis of the structure of such &continuities, ft is pwsiblr: thar 
disconrinuitles of this kind may be reduced to discontinuities of conventional gasdynam- 
. . KS, I. e. i along theses o 2:: II, L’,, , : E,,,:etc. Thus the analysis of the structure of a 
tangential discontinuity shows that the electric field normal component and the charge 

density ri are continuous, 
Shock wa’ves, Let nt + 0. i,, + Ct,It wiff be shown s~~se~uent~ that behind the 

wave&=- fi,,? i L-. This equality together with Eqs. (2+,8) - f%lo) constitute rhe 
complete system of relationships necessary for the determination of parameters behind 

the shock wave. To determine R,,, behind the wave we analyze the structure of an elec- 

trohydrodynamic shock wave. 

3. Structun- of &?. 8~~~~~~~~~i~ &o&r w&v% We select the x*axis perpend- 
icular to tile d~s~nt~n~~ front. To analyze the structure of such wave we write Eqs, 

(1. I) -+_ (1.4) on the assumption that all parameters depend only on the s-coordinate, 
the medium velocity, and that the electric field and current have components only 
along the s-axis, i.e., U, ZE li and i?‘, s 1: , 

(3.1 j 

where ri and 2. are, respcetiveZyy, the coefficients of visccs%y and thermal conduct+ 

i*ty of the medium, and t!/, 10. 11. i< are constants of integration. Transition to an 
inviscid and nonheat-conducting flow is achieved, when 11 --+ Oand h -* 0. 

Let the parameters related to the state of gas ahead of the shock wave be sptxified at 
pointx -.= r(:t c-r 0 white,for example, temprature T,, pressure p2 and the electric 
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potential Cpz be given at point x = x2 > 0. We have to find the solution of system 
(3.1) with the following boundary conditions: 

5= Xl, IL = Ul, I’ = Pl, p -= I-‘1- cp = q+, j = i. > 0 (22) 
x = x.,, _ T = T,, P = ~2, ‘p = ‘pz 

Unlike in the problem of shock wave structure in gasdynamics and magnetohydrodyna- 
mics. in this case the narameters do not tend to become constant forz + xrand 2 + x2 
because of dE / dx = ‘%t’ # 0. We shall consider that within region tl < x .( x2 
there exists a region of abrupt change of parameters within which derivatives are consi- 

derably greater than outside it. The pattern of variation of parameters in that region 
will be referred to as. the structure of an electrohydrodynamic shock wave. Writing Eqs. 
(3.1) in a dimensionless form, we have 

where 

Let us define the introduced dimensionless parameters. As the unit of length we have 

chosen4q / 3ptui.We shall show that length I is either of the order of the length of the 

gas particle free path or shorter. Assuming that q c~ pr p], where r is the time of the 

free path traverse, and denoting the free path length by I, and the mean thermal rate 
of particle fIow by ur we obtain for L the expression 

ut2 
I--r= 

Ul 
%I* dl* 

It will be readily seen that (3 is equal to the ratio of the eIectric field variation along 
the free path in the neighborhood of point z = x1 to the intensity !li of the field itself. 
In fact, integrating equationd&/il.c m= /i-tl,,we obtain 1\E rc~ 4rtqll. We assume that 
Qe 1. 
Let length 1, be such that along it the variati0nS.E - E i.e. , L - E, ! 4~qr.The 

product ELL N B,?,G.z~r is taken as the characteristic potential, Parameters u* m 1 and 

T*A I and we assume that:3,>1, 02 1, R, - land 1’ - 1. 
For 1 -0 (II - U, A, -. ~)Eqs. (3.1) are reduced to equations for an inviscid nonheat- 

conducting flow whose related equations at the shock wave were given in Sect. 2 above. 
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Let us assume that a shock wave is present at point 5 = Oin a perfect flow and investi- 
gate the variation of parameters of a viscous heat-conducting flow in the vicinity of 

that point, 

Equations (3.4) and 13.5) show that the variation of velocity and temperature (hence, 
also, of density and pressure) of an order of magnitude equal to that of related parame- 
ters ahead of the wave occurs within the shock wave over a width of the order of 1 or 

smaller. The second of Eqs. (3.6) implies that, when E* is bounded, the derivative 
~$9 ,’ d: + i) for I --f 0 ((I --f O}. In other words, the electric potential varies only 
slightly in the neighborhood of point 5 = Uand at the limit l, = 0 the potential 9 is 
continuous at transition through point x = 0. 

ft follows from the first of Eqs. (3.6) that, when u* + E*j$~r is finite in the vic- 

inity af pointg = 0 then for I --t 0 (c/ --t 0)the derivative dE*/dS + 0 and at the 
limit 2 = 0 also the electric field are continuous at transition through point x =O. By 

definition ZL+ > 0, El* > 0, u1 > 0. Let E, >O, then parameter R, > 0 and the 

sum u* + E*R,-1 -&which implies that the elecrric field normal components is 

continuous at the shock wave front. 

For E, < 0 we have q < 0 and&$ < 0 and at point E = & the sum Ur* -!- 

+ E,*fis-r > 0. Let us consider the-case of Us* + E,*Rs-r < o.With decreasing 

velocity u*within the shock wave structure the sum u* $- E*R,-‘decreases, since by 

virtue of (3.6) I?* varies only slightly. The electric field continues to vary slightly un- 
til this sum reaches the order of magnitude of 1 QI. The derivative’&‘* / dz then rea- 

ches the order of magnitude of minus unity, and the field E* will continue to decrease 

until the denominator u* -t E*Hs-‘exceeds IQ/. 
Thus in this case in the neighborhood of point E = 0 the sum Z.L* + E* R,-' - Iv]. 

At the limit q -+ 0 the sum u.*+ E*Rp-l = 0 or in dimensional form 

Es = --us/b (3.8) 
The charge bulk density q* by virtue of the last of Eqs. (3.6) tends to become infinite 

at this point, 
The surface charge intensity at the shock wave front correct to within terms of the 

order of Q is 

5=-&E%--El)=-$-(E,+ f, (3.9) 

For small I,/ the approximate solution of equation (rt * + R,-1E*) IT*’ = J Q generally 

consists of two parts: C * = E’,* = 1, where Lo* is the initial intensity ot the electric 
field and E* =- ii 1 ‘I ;*.These two parts continuously merge at point 5 = E*,where 

E;* i- I:~~~*(E*) I u.fn the neighborhood of this point the density of the charge reaches 

its maximum value c/m4 defined by the condition that Y*’ =t 0. Using the first and the 
third of Eqs. (3.6), we obtain 

This equation implies that 

I{ ‘* 
‘j *___>“” 

r0 V dE (3.10; 
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Taking into account Eq. (3.4) this relationship can be rewritten in the form 

The electric field at the point of the charge maximum density is 

E*=- Rp*- JQ 

(:i.li) 

It will be seen from (3.10) and (3.12) that for (z - 0 the maximum value of the charge 
density tends to become infinitely great, and the expression for E* reduces to (3.8). 

The analysis of the behavior of integral curves of the first of Eqs. (3.6) in plane 
(E*. E) shows that for (I -+ 0 the integral curve passing through point (Es* = 1, El) 
emerges from the region of considerable gradients with a vertical tangent. i. e., the 
point at which the density of the charge q* inside the shock wave structure become 

infinitely high tends forQ + 0 to the point corresponding to the state behind the shock 
wave front. 

Thus, when ui > 0, E, < 0 and the shock wave intensity is such that the velocity 
behind the wave front satisfies the inequality us + bE, < O,the electric field normal 

component becomes discontinuous at the shock wave, and a surface charge is generated 
at the wave front. For t+ >O, E, > 0, as well as in the case when j, < Ofor ui > 0 

and for any E, the electric field normal component is continuous. 

Let us explain in the case considered here the physical pattern of flow within the str- 

ucture of an electrohydrodynamic shock wave. The charged particles - ions- are pro- 
pelled by the gas stream against the force of the electric field. Within the shock wave 
the gas velocity diminishes and, consequently, the velocity of ions also decreases. 

However the ion rate of flow (current density) remains unchanged, hence the reduction 
of velocity leads to increase ion density. At the limit the motion of ions along the 

shock wave ceases and their density tends to increase infinitely thus creating a surface 
charge at the shock wave front, The increasing charge density results in the screening 

of the electric field. 

Let us assume that the interaction parameter S = , 1? H, (( I .In this case the effect 
of the electric field on the gasdynamic parameters can be neglected and the latter can 

be considered as being constant both ahead and behind the shock wave front. Integrating 
the first of Eqs. (3.6) with boundary condition (3.8) for E =I U we find that the variation 

of the electric field behind the shock wave front is 

E* z - &u:* - I/2!r,y/S 

or in dimensional form 

The charge density distribution behind the shock wave front is derived in this case 
from the last of Eqs. (3.6). It will be readily observed that the charge density decreas- 

es with increasing distance from the shock wave. 
We note that the introduction in Ohm’s law of the term proportional to the pressure 

gradient of ions results in the blurring of the region of abrupt change of the charge bulk 
density. Below we present the results of numerical calculation of the structure of an 

electrohydrodynamic shock wave made on certain simplifying assumptions. 
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4, Namerim rofutfon of f!m problsxn of 6~~~~~~ d&ok w&v6 MIwMa 
fib? 1 #m&l illwmerion purrrrr#r, A numerical solution of Eqs, (3.6) is used as an 
illustration of the qualitative analysis given in Sect. 3. Since with a small interaction 
parameter the motion is unaffected by the electric field, we had specified in EC& (3.6) 
the shock wave velocity profile. Solutions of Eqs, (3.6) are shown in Figs. l-3 as 

Fi8. 1. Fig. 2. 

functions of the coordinate % = El / L where 
L has the dimension of length. The gas vel- 

ocity in the shock wave was specified as u+ =5 
5 A - B exp( c/6) for c< @and as u* = 
=C f B exp [-- f;/ 6) for 5 > 0. The param- 
eter 6 is proportional to the shock wave width 
1. Calculations were made for the following 

values of parameters: L = 1, QL / I = -0.01, 
R,’ = --f&8, .f = 1, 8 = f (curves 
I in Figs. 1 - 3); 8 = 0.1 curves.2); 8 = 0.01 
(C’wes3); A’ = 1, B = 0.3, c = 0.4. 
Initial values of the electric field and potentiaX 
were E* = 1 and qis* = 0 Figure 3 shows a 
sharp increase of the maximum charge density 

Fig. 3. 
with decreasing shock wave thickness. 

An experimental method of obtaining shock 
waves with surface charges is suggested below. A probe under a negative potential is 
placed in the supersonic stream of a unipoiarly charged gas. A gasdynamic shock wave 
is generated upstream of this probe. Direction of the electric field ahead and behind 
the wave coincides with that of the stream velocity, and there is nothing to prevent the 
flow of ions toward the probe. By increasing the probe potential to zero and then mak- 
ing it positive it is possible to vary ahead of the wave the sign of the electric field com- 
ponent normal to the wave. If the conditions behind the wave are such that )~s _t & < 
< 0, a surface charge may be generated at the shock wave front. 

6. EvuWtWr of rboaohpdrodtmrm;ic &ok WIVW, The evolution of a shock wave is 
conditional on the number of various small perturbation waves radiating from the disco- 
ntinuity being smaller by one than the number of conditions along the shock wave [4,5), 
The number of such conditions at the e~ec~o~~odynamic shock wave is four, viz., 
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the equrtlons of conservation of mass, momentum, and energy at the wave front (the 
first three relationships of (2,7)), and the formula for the charge density (the last of Eqs. 
(3.1)). Values of the electric field and velocity derived from the solution of the one- 
dimensional motion in the neighborhood of the shock wave front with boundary conditions 
u=usu*a, andE= -us / b immediately ahead of the wave front. must be substitut- 

ed into the latter formula, The component of the electric field behind the shock wave 
front can be eliminated from the relationship of momenttfm conservation at the front by 
using Eqs. (S.6), since the electric field normal component does not vary in weak wa- 
ves. Thus it is unnecessary to take lnro account the equation for the electric field nor- 
mal component, when calculating the number of conditions at the shock wave. 

Let us consider the effect of short-wave high-frequency perturbations on the evolution 
of a shock wave. It will be readily seen that in electrohydrodynamics such perturbations 
propagate at the speed of sound a = f (yp / p)*“.The number of waves radiating from 
a shock wave is, for any relationship between tke velocities of wave propagation and of 
the stream, equal three (smaller exactly by one than the number of conditions at the 
shock wave), For j,, > 0 all these waves spread through the state 2 behind the shock 
wave front, They are: a sound wave propagating at velocity u,s -I- asIan entropy wave 
propagating at velocity uea,and an ion entropy wave propagating at velocity b&&s 3- 
f t+ i*l.Thus the evolution of shock wp~ves requires that any remaining small pertur- 
bation waves be incoming wavesi, This will be evidently sa, when the velocities of gas 
ahead and behind the shock wave are. respectively, higher and lower than the speed of 
sound in the regions ahead and behind the wave, i.e., 

8. ~~~~~~~~~ ;ta. Let us write the equation of a 
shock adiabate. Using the first of relationship (2. ‘I), we can write the second and third 

relatlonsbips as 

We intmduce dimensionless parameters 

Equations (6.1) in dimensionless form are 

P=1-el-e8,(~-1)f6e,V2, ~~(P~--~)+~B,(~~-I~!-(~(G.z) 

The re~tiom~~~~s i bE,s = 0 was used in the first of Eqs, (6,2), In a wide range 
of governing wameters we have Br 2 i, f’ 6 1, 6 < Below we consider the case 
in which the term #),J’s< 1 and can, consequently, be neglected. Eliminating 1), 
from Eqs. (6.2). we obtain for the shock adiabate in electrohydrodynamics the equation 
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p = .L+ (e, - I) + - 
‘i f 

;yl [Fi(el- I) -+ I] (V - T+j-’ (6.3) 

A similar equation defines the shock adiabate in magnetohydrodynamics in the presence 

of a conductance jump [6l. However the physical patterns of flow considered here and 

in [S] are different. Hence the attainable parts of an electrohydrodynamic adiabate dif- 

fer from the corresponding parts in magnetohydrodynamics. Equation (6.3) defines hyp- 

erboIaO.4A’O’with asymptotes 1 and II (Fig. 4). whose equations are, respectively 

Fig. 4. 

P -r -1 = - (el - I), 
711 

i’=r--1. 
T-i-1 

The upper branch of the hyperbola is shown in 
Fig. 4. The curve has been plotted for the case 

in which el - 1 < 0. The upper branch of the hy- 

perbola passes’ above point b‘ with coordinated 
&’ = 1 and V = 1. and intersects the axis P = 0 

at point 

rp, = - 2; -t t-r - 1) !e1 - 1) 
(7 - 1) (-21 - 1) >I 

Points of intersection of hyperbola defined by 
(6.3) with the straight line 

P = 1 - ei + 8, - e,v (6.4) 

passing through point a with coordinates V = i and P = 1 - 41. 
We recall that Eq. (6.4) Is an approximate expression of the law of momentum con- 

servation. Since the coefficient e1 > 0,hence points of the lower branch of the hyper- 

bola. as well as those lying along its part between points A and A’ are unattainable [ 13. 

We note that fore, > 1 the horizontal asymptote and the lower branch of the hyperb- 

ola may lie in region P > 0. It will be readily seen that in this case aIways I’< 0. Be- 

cause of this the lower branch of the hyperbola has no physical meaning. 
Parameter 6r Is the tangent of the angle of inclination to the abscissa of the secant 

drawn from pointa(V = 1, P=l - eJ to any arbitrary point (P, V) of the ebctrohydro- 
dynamic adlabate. This angle. evidently, cannot be smaller than angle a1 (Fig. 4) of 
inclination of the tangent a0. The flow rate of the medium m = (6 p,/u,)“~- the qua- 

ntity of medium passing through the discontinuity per unit of time and of surface area 

- cannot be below a definite Limit. A similar situation obtains in gasdynamics In the 
analysis of a deto-adlabate, when the rate of the medium combustion per unit of time 

and lcm20f the detonation wave surface cannot be below a definite limit. 

Equation (6.3) of the shock adlabate can be written as 

This equality less its last right-hand term is the equation of a gasdynamic shock adiab- 
ate. It will be readily seen that an electrohydrodynamic shock adlabate OAA’aIways 
lies above a gasdynamic adiabate passing through point h(Flg. 4). We draw the tang- 
ents to the gasdynamic shock adiabate at point h with coordinates V = 1 and P = 1 
and to the electrohydrodynamic shock adiabate passing through point rt with coordinates 
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V = 1 and P = 1 - el (Fig. 4), and denote the angles of these to the axis of abscis- 
sas by a2 and a1 respectively. 

We know from gasdynamics that the speed of sound is 

(6.5) 

On the other hand from Eq. (6.4) follows that 

41 z = plvltg a, (6.6) 

It follows from the condition of evolution (5.1) (u,i >a,)and from Eqs. (6.5) and 
(6.6) that ai > as,which means that only points of an electrohydrodynamic shock ad- 

iabate lying above point A are attainable. Hence behind the discontinuity considered 

here V < 1 and the discontinuity is a compression shock wave Let us prove that the 
velocity of gas behind the wave u,,~ < a2 corresponds to points lying above point 0 of 

the adiabate. Differentiating Eqs. (6.1) with respect to psand assuming vi, ETtl, p1 to 
be constants, E,, t = 0, and taking us and m as the variables, we obtain.as in gasdynam- 

its [4], that at point 0 

dm’ 
-= 
dPZ 

0, v..==a,, &i$)<O 
Above poinC 0 the velocity of gas behind the wave I&,,? < izs, while below it U,s > fl.2. 
Considerations of shock wave evolution imply that the velocity of gas u,s behind an el- 
ectrohydrodynamic shock wave must be lower than the speed of sound obtaining there. 

Hence only the part of the adiabate lying above point 0 can correspond to the state of 

gas behind an electrohydrodynamic shock wave. 
We note that. if for any reason the velocity of the ebctrohydrodynamic shock wave 

were specified, the condition of evolution would have permitted the attainment of oth- 

er parts of the shock adiabate. as happens in the theory of combustion. 
The formation of a discontinuity surface of the ekctric field normal component and 

the tendency of cl-m at such discontinuity is not necessarily connected with a shock 
wave. In any one-dimensional flow in the neighborhood of a point at which (4 f 5E - 

- o the charge density q - *band a discontinuity of the described kind occurs. 

The authors thank A. A. Barmin, A. G. Kulikovskii, V. A. Levin and L. I. Sedov for 

discussing this paper. 
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The problem of “splicing” of a vortex flow in a certain finite region of an inco- 
mpressible fluid with the surrounding potential stream along a fluid streamline 
is considered in the case in which the Bernoulli constant is subject to discontin- 
uity of a given magnitude along the streamline separating these two flows. A 
solution is found in the form of integrals containing two unknown functions for 
the definition of the contour and the vortex sheet intensity. A system of two 
nonlinear integral equations is derived for the determiuation of these parameters 
and the results of certain computer calculations are presented. 

Some of the recent models of incompressible fluid flow with zones of separa- 
tion at high Reynolds numbers [l. 21 show that the limit solution of the Navier- 
Stokes equations defines a ilow with a constant vortex in the separation zone (in 
the case of plane flow) bordering on the external potential stream. This has pr- 
ompted a number of investigations of vortex and potential flows in contact along 
a fluid streamline. The problem of such flow in a given finite region is consid- 
ered in [r’l. A similar problem of flow in an unbounded region is considered in 
[4 - 63. and an application of this solution to the investigation of flows past bod- 
ies with stationary separation zones at high Reynolds numbers is presented in fl& 
The problem of “splicing” of vortex and potential flows in the presence of a boiy 
when the Bernoulli constant becomes discontinuous at the vortex zone boundary 
is examined in 183 in an approximate manner. 

Below we present a solution of the exactly formulated problem of “splicing” 
in the presence of a jump of Bernoulli’s comtant in a flow without rigid bound- 
aries, which according to fr] corresponds to infinitely great Reynolds numbers 
and special boundary conditions in the separation zone. 

1. Let us consider a two-dimensional stationary potential flow of a perfect incompr- 
essible fluid containing a zone I: of vortex ilow. Let the direction of the X-axis coin- 
cide with that of the potential stream at infinity and the length of the zone along this 
axis be equal to Z. We specify the vortex distribution by 

0 (s, y) = - o. sign y (0 1 = corlst > 0) 

and introduce in the usual manner the stream function $ 


